Jeng Yih Law, Abdul Wahab Mohammad


Forward osmosis (FO) technology has received increasing attention from many researchers since the last decade. It is an osmotically driven membrane process in which water migrates across a semi-permeable membrane from a lower osmotic pressure feed solution to a higher osmotic pressure draw solution. FO technology is often applied as a hybrid system rather than a standalone process. The purpose of this paper is to review the different types of hybrid system configurations employing FO technology for the production of potable/pure water. The integration of FO technology with other processes which include reverse osmosis, crystallisation, membrane bioreactor, nanofiltration, and electrodialysis are presented and described in-depth. With the flourishing of various FO hybrid system configurations, it is believed that FO technology will play a vital role in the water processing industry.  


Forward osmosis, hybrid system configuration, water, osmotic pressure

Full Text:



Cath, T. Y., Childress, A. E., Elimelech, M. 2006. Forward Osmosis: Principles, Applications, and Recent Developments. Journal of Membrane Science. 281: 70-87.

Kravath, R. E., and Davis, J. A. 1975. Desalination of Sea Water by Direct Osmosis. Desalination. 16: 151-155.

Kessler, J. O., and Moody, C. D. 1976. Drinking Water from Sea Water by Forward Osmosis. Desalination. 18: 297-306.

Moody, C. D., and Kessler, J. O. 1976. Forward Osmosis Extractors. Desalination. 18: 283-295.

Petrotos, K. B., Quantick, P. C., and Petropakis, H. 1999. Direct Osmotic Concentration of Tomato Juice in Tubular Membrane - Module Configuration. II. The Effect of Using Clarified Tomato Juice on the Process Performance. Journal of Membrane Science. 160: 171-177.

Petrotos, K. B., and Lazarides, H. N. 2001. Osmotic Concentration of Liquid Foods. Journal of Food Engineering. 49: 201-206.

Petrotos, K. B., Quantick, P., and Petropakis, H. 1998. A Study of the Direct Osmotic Concentration of Tomato Juice in Tubular Membrane - Module Configuration. I. The Effect of Certain Basic Process Parameters on the Process Performance. Journal of Membrane Science. 150: 99-110.

Wrolstad, R. E., McDaniel, M. R., Durst, R. W., Micheals, N., Lampi, K. A., and Beaudry, E. G. 1993. Composition and Sensory Characterization of Red Raspberry Juice Concentrated by Direct-Osmosis or Evaporation. Journal of Food Science. 58: 633-637.

Van der Bruggen, B., and Luis, P. 2015. Forward Osmosis: Understanding the Hype. Reviews in Chemical Engineering. 31: 1-12.

Chou, S., Shi, L., Wang, R., Tang, C. Y., Qiu, C., and Fane, A. G. 2010. Characteristics and Potential Applications of a Novel Forward Osmosis Hollow Fiber Membrane. Desalination. 261: 365-372.

Chung, T.-S., Li, X., Ong, R.C., Ge, Q., Wang, H., and Han, G. 2012. Emerging Forward Osmosis (FO) Technologies and Challenges Ahead for Clean Water and Clean Energy Applications. Current Opinion in Chemical Engineering. 1: 246-257.

Chung, T.-S., Zhang, S., Wang, K. Y., Su, J., and Ling, M. M. 2012. Forward Osmosis Processes: Yesterday, Today and Tomorrow. Desalination. 287: 78-81.

Zhao, S., Zou, L., Tang, C. Y., and Mulcahy, D. 2012. Recent Developments in Forward Osmosis: Opportunities and Challenges. Journal of Membrane Science. 396: 1-21.

Phuntsho, S., Sahebi, S., Majeed, T., Lotfi, F., Kim, J. E., and Shon, H. K. 2013. Assessing the Major Factors Affecting the Performances of Forward Osmosis and its Implications on the Desalination Process. Chemical Engineering Journal. 231: 484-496.

Altaee, A., Mabrouk, A., and Bourouni, K. 2013. A Novel Forward Osmosis Membrane Pretreatment of Seawater for Thermal Desalination Processes. Desalination. 326: 19-29.

Achilli, A., Cath, T. Y., Marchand, E. A., and Childress, A. E. 2009. The Forward Osmosis Membrane Bioreactor: A Low Fouling Alternative to MBR Processes. Desalination. 239: 10-21.

Dova, M. I., Petrotos, K. B., and Lazarides, H. N. 2007. On the Direct Osmotic Concentration of Liquid Foods. Part I: Impact of Process Parameters on Process Performance. Journal of Food Engineering. 78: 422-430.

Garcia-Castello, E.M., and McCutcheon, J.R. 2011. Dewatering Press Liquor Derived from Orange Production by Forward Osmosis. Journal of Membrane Science. 372: 97-101.

Sant’Anna, V., Marczak, L. D. F., and Tessaro, I. C. 2012. Membrane Concentration of Liquid Foods by Forward Osmosis: Process and Quality View. Journal of Food Engineering. 111: 483-489.

Altaee, A., Zaragoza, G., and Sharif, A. 2014. Pressure Retarded Osmosis for Power Generation and Seawater Desalination: Performance Analysis. Desalination. 344: 108-115.

Yip, N. Y., Tiraferri, A., Phillip, W. A., Schi, J. D., Hoover, L. A., Kim, Y. C., and Elimelech, M. 2011. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environmental Science & Technology. 45: 4360-4369.

Adham, S., Hussain, A., Matar, J. M., Dores, R., and Janson, A. 2013. Application of Membrane Distillation for Desalting Brines from Thermal Desalination Plants. Desalination. 314: 101-108.

Al-Obaidani, S., Curcio, E., Macedonio, F., Diprofio, G., Al-Hinai, H., and Drioli, E. 2008. Potential of Membrane Distillation in Seawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation. Journal of Membrane Science. 323: 85-98.

Misdan, N., Lau, W. J., and Ismail, A. F. 2012. Seawater Reverse Osmosis (SWRO) Desalination by Thin-Film Composite Membrane—Current Development, Challenges and Future Prospects. Desalination. 287: 228-237.

Al-Shammiri, M., Ahmed, M., and Al-Rageeb, M. 2004. Nanofiltration and Calcium Sulfate Limitation for Top Brine Temperature in Gulf Desalination Plants. Desalination. 167: 335-346.

Zhou, D., Zhu, L., Fu, Y., Zhu, M., and Xue, L. 2015. Development of Lower Cost Seawater Desalination Processes Using Nanofiltration Technologies - A Review. Desalination. 376: 109-116.

Ning, R.Y., and Troyer, T.L. 2009. Tandom Reverse Osmosis Process for Zero-Liquid Discharge. Desalination. 237: 238-242.

Heijman, S. G. J., Guo, H., Li, S., van, Dijk. J. C., and Wessels, L. P. 2009. Zero Liquid Discharge: Heading for 99% Recovery in Nanofiltration and Reverse Osmosis. Desalination. 236: 357-362.

Su, J., Zhang, S., Ling, M. M., and Chung, T.-S. 2012. Forward Osmosis: An Emerging Technology for Sustainable Supply of Clean Water. Clean Technologies and Environmental Policy. 14: 507-511.

McGinnis, R. L., and Elimelech, M. 2007. Energy Requirements of Ammonia–Carbon Dioxide Forward Osmosis Desalination. Desalination. 207: 370-382.

Wang, K. Y., Teoh, M. M., Nugroho, A., and Chung, T.-S. 2011. Integrated Forward Osmosis–Membrane Distillation (FO–MD) Hybrid System for The Concentration of Protein Solutions. Chemical Engineering Science. 66: 2421-2430.

Zhao, S., Zou, L., and Mulcahy, D. 2012. Brackish Water Desalination by a Hybrid Forward Osmosis–Nanofiltration System Using Divalent Draw Solute. Desalination. 284: 175-181.

Lee, S., Boo, C., Elimelech, M., and Hong, S. 2010. Comparison of Fouling Behavior in Forward Osmosis (FO) and Reverse Osmosis (RO). Journal of Membrane Science. 365: 34-39.

Cornelissen, E. R., Harmsen, D., Dekorte, K. F., Ruiken, C. J., Qin, J., Oo, H., and Wessels, L. P. 2008. Membrane Fouling and Process Performance of Forward Osmosis Membranes on Activated Sludge. Journal of Membrane Science. 319: 158-168.

Mi, B., and Elimelech, M. 2008. Chemical and Physical Aspects of Organic Fouling of Forward Osmosis Membranes. Journal of Membrane Science. 320: 292-302.

Liu, Y., and Mi, B. 2012. Combined Fouling of Forward Osmosis Membranes: Synergistic Foulant Interaction and Direct Observation of Fouling Layer Formation. Journal of Membrane Science. 407-408: 136-144.

Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., and Cath, T. Y. 2014. The Sweet Spot of Forward Osmosis: Treatment of Produced Water, Drilling Wastewater, and Other Complex and Difficult Liquid Streams. Desalination. 333: 23-35.

Kim, Y., Elimelech, M., Shon, H. K., and Hong, S. 2014. Combined Organic and Colloidal Fouling in Forward Osmosis: Fouling Reversibility and the Role of Applied Pressure. Journal of Membrane Science. 460: 206-212.

Tang, C. Y., She, Q., Lay, W. C. L., Wang, R., and Fane, A. G. 2010. Coupled Effects of Internal Concentration Polarization and Fouling on Flux Behavior of Forward Osmosis Membranes During Humic Acid Filtration. Journal of Membrane Science. 354: 123-133.

Cath, T. Y., Hancock, N. T., Lundin, C. D., Hoppe-Jones, C., and Drewes, J. E. 2010. A Multi-Barrier Osmotic Dilution Process for Simultaneous Desalination and Purification of Impaired Water. Journal of Membrane Science. 362: 417-426.

Zaviska, F., and Zou, L. 2014. Using Modelling Approach to Validate a Bench Scale Forward Osmosis Pre-Treatment Process for Desalination. Desalination. 350: 1-13.

Phuntsho, S., Shon, H. K., Hong, S., Lee, S., and Vigneswaran, S. 2011. A Novel Low Energy Fertilizer Driven Forward Osmosis Desalination for Direct Fertigation: Evaluating the Performance of Fertilizer Draw Solutions. Journal of Membrane Science. 375: 172-181.

Bamaga, O. A., Yokochi, A., and Beaudry, E. G. 2009. Application of Forward Osmosis in Pretreatment of Seawater for Small Reverse Osmosis Desalination Units. Desalination and Water Treatment. 5: 183-191.

Kim, C., Lee, S., Shon, H.K., Elimelech, M., and Hong, S. 2012. Boron Transport in Forward Osmosis: Measurements, Mechanisms, and Comparison with Reverse Osmosis. Journal of Membrane Science. 419-420: 42-48.

Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S., and Elimelech, M. 2015. Forward Osmosis : Where are We Now ? Desalination. 356: 271-284.

Xie, M., Nghiem, L. D., Price, W. E., and Elimelech, M. 2012. Comparison of the Removal of Hydrophobic Trace Organic Contaminants by Forward Osmosis and Reverse Osmosis. Water Research. 46: 2683-2692.

Hoover, L. A., Phillip, W. A., Tiraferri, A., Yip, N. Y., and Elimelech, M. 2011. Forward with Osmosis : Emerging Applications for Greater Sustainability. Environmental Science & Technology. 45: 9824-9830.

Bamaga, O. A., Yokochi, A., Zabara, B., and Babaqi, A.S. 2011. Hybrid FO/RO Desalination System: Preliminary Assessment of Osmotic Energy Recovery and Designs of New FO Membrane Module Configurations. Desalination. 268: 163-169.

Fritzmann, C., Löwenberg, J., Wintgens, T., and Melin, T. 2007. State-of-the-art of Reverse Osmosis Desalination. Desalination. 216: 1-76.

Peñate, B., and García-Rodríguez, L. 2012. Current Trends and Future Prospects in the Design of Seawater Reverse Osmosis Desalination Technology. Desalination. 284: 1-8.

Li, M. 2011. Reducing Specific Energy Consumption in Reverse Osmosis (RO) Water Desalination: An Analysis from First Principles. Desalination. 276: 128-135.

Ludwig, H. 2010. Energy Consumption of Reverse Osmosis Seawater Desalination - Possibilities for its Optimisation in Design and Operation of SWRO Plants. Desalination and Water Treatment. 13: 13-25.

Liu, C., Rainwater, K., and Song, L. 2011. Energy Analysis and Efficiency Assessment of Reverse Osmosis Desalination Process. Desalination. 276: 352-358.

Achilli, A., Cath, T. Y., and Childress, A. E. 2010. Selection of Inorganic-Based Draw Solutions for Forward Osmosis Applications. Journal of Membrane Science. 364: 233-241.

Altaee, A., Zaragoza, G., and van Tonningen, H.R. 2014. Comparison between Forward Osmosis-Reverse Osmosis and Reverse Osmosis Processes for Seawater Desalination. Desalination. 336: 50-57.

Yangali-Quintanilla, V., Li, Z., Valladares, R., Li, Q., and Amy, G. 2011. Indirect Desalination of Red Sea Water with Forward Osmosis and Low Pressure Reverse Osmosis for Water Reuse. Desalination. 280: 160-166.

Altaee, A. 2012. Computational Model for Estimating Reverse Osmosis System Design and Performance: Part-One Binary Feed Solution. Desalination. 291: 101-105.

Kim, D. Y., Gu, B., Kim, J. H., and Yang, D. R. 2013. Theoretical Analysis of a Seawater Desalination Process Integrating Forward Osmosis, Crystallization, and Reverse Osmosis. Journal of Membrane Science. 444: 440-448.

Bowden, K. S., Achilli, A., and Childress, A. E. 2012. Organic Ionic Salt Draw Solutions for Osmotic Membrane Bioreactors. Bioresource Technology. 122: 207-216.

Holloway, R. W., Childress, A. E., Dennett, K. E., and Cath, T. Y. 2007. Forward Osmosis for Concentration of Anaerobic Digester Centrate. Water Research. 41: 4005-4014.

Qin, J.-J., Oo, M. H., Tao, G., Cornelissen, E. R., Ruiken, C. J., de Korte K. F., Wessels, L. P., and Kekre Kiran, A. 2009. Optimization of Operating Conditions in Forward Osmosis for Osmotic Membrane Bioreactor. The Open Chemical Engineering Journal. 3: 27-32.

Lay, W. C. L., Liu, Y., and Fane, A. G. 2010. Impacts of Salinity on the Performance of High Retention Membrane Bioreactors for Water Reclamation: A Review. Water Research. 44: 21-40.

Lay, W. C. L., Zhang, Q., Zhang, J., McDougald, D., Tang, C., Wang, R., Liu, Y., and Fane, A. G. 2011. Study of Integration of Forward Osmosis and Biological Process: Membrane Performance Under Elevated Salt Environment. Desalination. 283: 123-130.

Zhang, H., Ma, Y., Jiang, T., Zhang, G., and Yang, F. 2012. Influence of Activated Sludge Properties on Flux Behavior in Osmosis Membrane Bioreactor (OMBR). Journal of Membrane Science. 390-391: 270-276.

Xiao, D., Tang, C. Y., Zhang, J., Lay, W. C. L., Wang, R., and Fane, A. G. 2011. Modeling Salt Accumulation in Osmotic Membrane Bioreactors: Implications for FO Membrane Selection and System Operation. Journal of Membrane Science. 366: 314-324.

Cho, Y. H., Lee, H. D., and Park, H. B. 2012. Integrated Membrane Processes for Separation and Purification of Organic Acid from a Biomass Fermentation Process. Industrial & Engineering Chemistry Research. 51: 10207-10219.

Su, J., Chung, T.-S., Helmer, B. J., and de Wit, J. S. 2012. Enhanced Double-Skinned FO Membranes with Inner Dense Layer for Wastewater Treatment and Macromolecule Recycle Using Sucrose as Draw Solute. Journal of Membrane Science. 396: 92-100.

Tan, C. H., and Ng, H. Y. 2010. A Novel Hybrid Forward Osmosis - Nanofiltration (FO-NF) Process for Seawater Desalination: Draw Solution Selection and System Configuration. Desalination and Water Treatment. 13: 356-361.

Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., and Moulin, P. 2009. Reverse Osmosis Desalination: Water Sources, Technology, and Today’s Challenges. Water Research. 43: 2317-2348.

Zhang, Y., Pinoy, L., Meesschaert, B., and Van Der Bruggen, B. 2013. A Natural Driven Membrane Process for Brackish and Wastewater Treatment: Photovoltaic Powered ED and FO Hybrid System. Environmental Science & Technology. 47: 10548-10555.

Malek, P., Ortiz, J. M., Richards, B. S., and Schäfer, A. I. 2013. Electrodialytic Removal of NaCl from Water: Impacts of Using Pulsed Electric Potential on Ion Transport and Water Dissociation Phenomena. Journal of Membrane Science. 435: 99-109.

Káňavová, N., and Machuča, L. 2014. A Novel Method for Limiting Current Calculation in Electrodialysis Modules. Periodica Polytechnica Chemical Engineering. 58: 125-130.

Huang, C., Xu, T., Zhang, Y., Xue, Y., and Chen, G. 2007. Application of Electrodialysis to the Production of Organic Acids: State-of-the-art and Recent Developments. Journal of Membrane Science. 288: 1-12.

Schäfer, A. I., and Richards, B. S. 2005. Testing of a Hybrid Membrane System for Groundwater Desalination in an Australian National Park. Desalination. 183: 55-62.

Richards, B. S., Capão, D. P. S., and Schäfer, A. I. 2008. Renewable Energy Powered Membrane Technology. 2. The Effect of Energy Fluctuations on Performance of a Photovoltaic Hybrid Membrane System. Environmental Science & Technology. 42: 4563-4569.

Charcosset, C. 2009. A Review of Membrane Processes and Renewable Energies for Desalination. Desalination. 245: 214-231.

Ghermandi, A., and Messalem, R. 2009. Solar-driven Desalination with Reverse Osmosis: The State of the Art. Desalination and Water Treatment. 7: 285-296.

Schrier, J. 2012. Ethanol Concentration by Forward Osmosis with Solar-Regenerated Draw Solution. Solar Energy. 86: 1351-1358.

Strathmann, H. 2010. Electrodialysis, a Mature Technology with a Multitude of New Applications. Desalination. 264: 268-288.

Zhang, Y., Van der Bruggen, B., Pinoy, L., and Meesschaert, B. 2009. Separation of Nutrient Ions and Organic Compounds from Salts in RO Concentrates by Standard and Monovalent Selective Ion-Exchange Membranes Used in Electrodialysis. Journal of Membrane Science. 332: 104-112.

McGovern, R. K., and Lienhard, V. J. H. 2014. On the Potential of Forward Osmosis to Energetically Outperform Reverse Osmosis Desalination. Journal of Membrane Science. 469: 245-250.

Semiat, R., Sapoznik, J., and Hasson, D. 2010. Energy Aspects in Osmotic Processes. Desalination and Water Treatment. 15: 228-235.

McGinnis, R. L., Hancock, N. T., Nowosielski-Slepowron, M. S., and McGurgan, G. D. 2013. Pilot Demonstration of the NH3/CO2 Forward Osmosis Desalination Process on High Salinity Brines. Desalination. 312: 67-74.

Chekli, L., Phuntsho, S., Shon, H. K., Vigneswaran, S., and Chanan, A. 2012. A Review of Draw Solutes in Forward Osmosis Process and Their Use in Modern Applications. Desalination and Water Treatment. 43: 167-184.

Luo, H., Wang, Q., Zhang, T.C., Tao, T., Zhou, A., Chen, L., and Bie, X. 2014. A Review on the Recovery Methods of Draw Solutes in Forward Osmosis. Journal of Water Process Engineering. 4: 212-223.

DOI: http://dx.doi.org/10.11113/jt.v79.10402


  • There are currently no refbacks.

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.