Shajaratuldur Ismail, Nurlidia Mansor, Zakaria Man, Khairun Azizi Azizli


Starch is one of natural materials that been used for producing biodegradable materials. The starch-based materials are produced through a process known as gelatinization with the presence of plasticizer and elevated temperature. Properties of starch-based materials are lacking in terms of viscosity, water absorption, thermal and mechanical properties compare with synthetic materials. Researchers are involved in finding ways for improvement of starch-based materials properties and one of that is introducing new plasticizer. 1-ethyl-3-methylimidazolium acetate, [Emim][OAc] is an ionic liquid that used as plasticizer to produce thermoplastic starch. Starch plasticized by [Emim][OAc] were prepared with different total plasticizer contents (50%,70%) and [Emim][OAc]/water ratio (1:6,1:4,2:3 wt%). The thermoplastic starches were characterized in terms of morphology, crystalline structure and thermal degradation. The results showed that 70% of total plasticizer contents were mixed well during gelatinization process. [Emim][OAc] contributed to granule disruption as shown by SEM. Based on the XRD analysis, it was shown that thermoplastic starch at 70% total plasticizer contents and 1:4 wt% ratio of [Emim][OAc]/water, caused disruption of the A-type crystalline structure, generated VH-type crystalline structure and thus increased the mobility of the amorphous starch. The presence of [Emim][OAc] promotes the thermal degradation of starch molecules as described by TGA. Therefore, plasticizer contents and [Emim][OAc]/water ratio are vital parameters that influences the properties of thermoplastic starch.


Starch, Ionic liquid, 1-ethyl-3-methylimidazolium acetate, Plasticizer, Gelatinization

Full Text:



Johar, N., & Ahmad, I. 2012. Morphological, Thermal, and Mechanical Properties of Starch Biocomposite Films Reinforced by Cellulose Nanocrystals from Rice Husks. BioResources. 7(4): 5469-5477.

Wu, G., E. Sun, H. Huang, Z. Chang, & Y. Xu. 2013. Preparation and Properties of Biodegradable Planting Containers Made with Straw and Starch Adhesive. BioResources. 8(4): 5358-5368.

García, N. L., L. Ribba, A. Dufresne, M. Aranguren, & S. Goyanes. 2011. Effect of Glycerol on the Morphology of Nanocomposites Made from Thermoplastic Starch and Starch Nanocrystals. Carbohydrate Polymers. 84(1): 203-210.

Yu, L., K. Dean, & L. Li. 2006. Polymer Blends and Composites from Renewable Resources. Progress in Polymer Science. 31(6): 576-602.

Zullo, R., & Iannace, S. 2009. The Effects of Different Starch Sources and Plasticizers on Film Blowing of Thermoplastic Starch: Correlation Among Process, Elongational Properties And Macromolecular Structure. Carbohydrate Polymers. 77(2): 376-383.

Fu, Z. Q., L. J. Wang, D. Li, Q. Wei, & B. Adhikari. 2011. Effects of High-pressure Homogenization on the Properties of Starch-plasticizer Dispersions and Their Films. Carbohydrate Polymers. 86(1): 202-207.

Jane. J. 2009. Structural Features of Starch Granules II. Starch: Chemistry and Technology. 3.

Pérez, S., P. M. Baldwin, & Gallant, D. J. 2009. Structural Features of Starch Granules I. Starch: Chemistry and Technology. 3.

Pérez, S., & Bertoft, E. 2010. The Molecular Structures of Starch Components and Their Contribution to the Architecture of Starch Granules: A Comprehensive Review. Starch‐Stärke. 62(8): 389-420.

Atwell, W. A., & Thomas, D. J. 1997. Starches. St. Paul, MN: American Association of Cereal Chemists. 25-30.

Xie, F., B. M. Flanagan, M. Li, R. W. Truss, P. J. Halley, M. J. Gidley, & R. D. Rogers. 2015. Characteristics of Starch-based Films with Different Amylose Contents Plasticised by 1-ethyl-3-methylimidazolium Acetate. Carbohydrate Polymers. 122: 160-168.

Averous, L. 2004. Biodegradable Multiphase Systems based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews. 44(3): 231-274.

Liu, H., F. Xie, L. Yu, L. Chen, & L. Li. 2009. Thermal Processing of Starch-based Polymers. Progress in Polymer Science. 34(12): 1348-1368.

Lomelí-Ramírez, M. G., S. G. Kestur, R. Manríquez-González, S. Iwakiri, G. B. de Muniz, & T. S. Flores-Sahagun. 2014. Bio-composites of cassava Starch-green Coconut Fiber: Part II—Structure and Properties. Carbohydrate Polymers. 102: 576-583.

Xie, F., P. J. Halley, & L. Avérous. 2012. Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Progress in Polymer Science. 37(4): 595-623.

Xie, F., E. Pollet, P. J. Halley, & L. Avérous. 2013. Starch-based Nano-biocomposites. Progress in Polymer Science. 38(10): 1590-1628.

Krogars, K., J. Heinämäki, M. Karjalainen, J. Rantanen, P. Luukkonen, & J. Yliruusi. 2003. Development and Characterization of Aqueous Amylose-rich Maize Starch Dispersion for Film Formation. European Journal of Pharmaceutics and Biopharmaceutics. 56(2): 215-221.

McGlashan, S. A., & Halley, P. J. 2003. Preparation and Characterisation of Biodegradable Starch‐based Nanocomposite Materials. Polymer International. 52(11): 1767-1773.

Poutanen, K., & Forssell, P. 1996. Modification of Starch Properties with Plasticizers. Trends in Polymer Science. 4(4): 128-132.

Han, S., J. Li, S. Zhu, R. Chen, Y. Wu, X. Zhang, & Z. Yu. 2009. Potential Applications of Ionic Liquids in Wood Related Industries. Bioresources. 4(2): 825-834.

Liebert, T., & Heinze, T. 2008. Interaction of Ionic Liquids with Polysaccharides. 5. Solvents and Reaction Media for the Modification of Cellulose. BioResources. 3(2): 576-601.

Shamsuri, A. A., & Abdullah, D. K. 2010. Isolation and Characterization of Lignin from Rubber Wood in Ionic Liquid Medium. Modern Applied Science. 4(11): 19.

Shamsuri, A. A., & Daik, R. 2012. Plasticizing Effect of Choline Chloride/Urea Eutectic-based Ionic Liquid on Physicochemical Properties of Agarose Films. BioResources. 7(4): 4760-4775.

Biswas, A., R. L. Shogren, D. G. Stevenson, J. L. Willett, & P. K. Bhowmik. 2006. Ionic Liquids as Solvents for Biopolymers: Acylation of Starch and Zein Protein. Carbohydrate Polymers. 66(4): 546-550.

El Seoud, O. A., A. Koschella, L. C. Fidale, S. Dorn, & T. Heinze. 2007. Applications of Ionic Liquids in Carbohydrate Chemistry: A Window of Opportunities. Biomacromolecules. 8(9): 2629-2647.

Wilpiszewska, K., & Spychaj, T. 2011. Ionic Liquids: Media for Starch Dissolution, Plasticization and Modification. Carbohydrate Polymers. 86(2): 424-428.

Zakrzewska, M. E., E. Bogel-Łukasik, & R. Bogel-Łukasik. 2010. Solubility of Carbohydrates in Ionic Liquids. Energy & Fuels. 24(2): 737-745.

Zhu, S., Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, & G. Wu. 2006. Dissolution of Cellulose with Ionic Liquids and Its Application: A Mini-Review. Green Chemistry. 8(4): 325-327.

Sankri, A., A. Arhaliass, I. Dez, A. C. Gaumont, Y. Grohens D. Lourdin, & E. Leroy. 2010. Thermoplastic Starch Plasticized by an Ionic Liquid. Carbohydrate Polymers. 82(2): 256-263.

Xie, F., B. M. Flanagan, M. Li, P. Sangwan, R. W. Truss, P. J. Halley, & J. L. Shamshina. 2014. Characteristics of Starch-based Films Plasticised by Glycerol and by the Ionic Liquid 1-ethyl-3-methylimidazolium Acetate: A Comparative Study. Carbohydrate Polymers. 111: 841-848.

Saengchan, K., M. Nopharatana, & W. Songkasiri. 2011. Influence of Feed Flow Rate on Tapioca Starch Perforation through Filter Medium in a Conical-screen Centrifuge. International Conference on Chemical, Ecology and Environmental Sciences (ICCEBS), 2011. Bangkok, Thailand. December 2011. 389-393.

Mohd Makhtar, N. S., M. N. Muhd Rodhi, M. Musa, & K. H. Ku Hamid. 2013. Thermal Behavior of Tacca Leontopetaloides Starch-based Biopolymer. International Journal of Polymer Science 2013.

Tajuddin, S., F. Xie, T. M. Nicholson, P. Liu, & P. J. Halley. 2011. Rheological Properties of Thermoplastic Starch Studied by Multipass Rheometer. Carbohydrate Polymers. 83(2): 914-919.

Chen, Y., S. Huang, Z. Tang, X. Chen, & Z. Zhang. 2011. Structural Changes of Cassava Starch Granules Hydrolyzed by a Mixture of Α-Amylase and Glucoamylase. Carbohydrate Polymers. 85(1): 272-275.

Taghizadeh, A., & Favis, B. D. 2013. Effect of High Molecular Weight Plasticizers on the Gelatinization of Starch Under Static and Shear Conditions. Carbohydrate Polymers. 92(2): 1799-1808.

Cheetham, N. W., & Tao, L. 1998. Variation in Crystalline Type with Amylose Content in Maize Starch Granules: An X-Ray Powder Diffraction Study. Carbohydrate Polymers. 36(4): 277-284.

Tan, I., B. M. Flanagan, P. J. Halley, A. K. Whittaker, & M. J. Gidley. 2007. A method for Estimating the Nature and Relative Proportions of Amorphous, Single, and Double-Helical Components in Starch Granules by 13C CP/MAS NMR. Biomacromolecules. 8(3): 885-891.

van Soest, J. J., R. C. Bezemer, D. de Wit, & J. F. Vliegenthart. 1996. Influence of Glycerol on the Melting of Potato Starch. Industrial Crops and Products. 5(1): 1-9.

Jiang, W., X. Qiao, & K. Sun. 2006. Mechanical and Thermal Properties of Thermoplastic Acetylated Starch/poly (ethylene-co-vinyl alcohol) Blends. Carbohydrate Polymers. 65(2): 139-143.

Rajan, A., V. S. Prasad, & T. E. Abraham. 2006. Enzymatic Esterification of Starch Using Recovered Coconut Oil. International Journal of Biological Macromolecules. 39(4): 265-272.

Rath, S. K., & Singh, R. P. 1998. On the Characterization of Grafted and Ungrafted Starch, Amylose, and Amylopectin. Journal of Applied Polymer Science. 70(9): 1795-1810.

Wilhelm, H. M., M. R. Sierakowski, G. P. Souza, & F. Wypych. 2003. Starch Films Reinforced with Mineral Clay. Carbohydrate Polymers. 52(2): 101-110.

Kärkkäinen, J., K. Lappalainen, P. Joensuu, & M. Lajunen. 2011. HPLC-ELSD Analysis of Six Starch Species Heat-dispersed in [BMIM] Cl Ionic Liquid. Carbohydrate Polymers. 84(1): 509-516.

Stevenson, D. G., A. Biswas, J. L. Jane, & G. E. Inglett. 2007. Changes in Structure and Properties of Starch of Four Botanical Sources Dispersed in the Ionic Liquid, 1-Butyl-3-Methylimidazolium Chloride. Carbohydrate Polymers. 67(1): 21-31.



  • There are currently no refbacks.

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.