CELLOBIOSE DEHYDROGENASE/ EPOXY- GRAPHITE COMPOSITE WITH ARYL DIAZONIUM REDUCTION FOR LACTOSE DETECTION

Mimi Hani Abu Bakar, Neil F Pasco, Ravi Gooneratne, Kim Byung Hong

Abstract


Milk is an important ingredient in our day to day diet bacause of the high quality nutrients in it. In the dairy industry including cheese fermentation processes, there is a need to control the release of lactose into wastewater streams. There are methods adopted to recover the lactose and to transform the lactose into energy through renewable energy (RE) pathways. These methods however are expensive and require certain skill to operate them. In this study, in-house electrode, which is simple and can be applied after one day of fabrication were investigated. The method was by using graphite-epoxy composite electrode, surface modified with cellobiose dehydrogenase (CDH) enzyme using aryl diazonium. These designed composite electrodes were tested on its capability as biosensor for sensitivity on detecting the lactose as well as its capability as an anode in enzymatic fuel cell (EFC) on long term electrochemical stability in generating electricity from lactose oxidation. The results showed that the CDH-Aryl diazonium modified on surface of fabricated graphite-epoxy electrodes had Michaelis Menten constant Km for CDH (0.65 – 0.75 mM) comparable to available commercial electrodes reported in the literature (0.7 mM). They are also conductively sensitive with the current intensity 86% more with the above mentioned electrodes when modified with embedded multi-walled carbon nanotube (MWCNT) and gave a high reproducibility signal (63% more than fabricated electrodes without MWCNT). In addition to the above, its performance stability in continuous mode operation for 25 days, recorded almost consistent in current detection (19.2 ± 3.8 µA/ cm2). Hence, these fabricated electrodes give alternative for a sensitive lactose detector which is cheap and simple to fabricate.


Keywords


Biosensor, cellobiose dehydrogenase/aryl diazonium, enzymatic fuel cell, graphite-epoxy composite, lactose

Full Text:

PDF

References


Janni, K. A., D. R. Schmidt, and S. H. Christopherson. 2007. Milk House Wastewater Characteristics. Extension. 1206: 1-4.

Barnett, J. W., S. L. Robertson, and J. M. Russel. 1998. Environmental Issue in Dairy Processing. Palmerston North: New Zealand Institute of Chemistry.

Chollangi, A. and M. M. Hossain. 2007. Separation of Proteins and Lactose from Dairy Wastewater. Chemical Engineering and Processing. 46(5): 398-404.

de Souza, R. R., R. n. Bergamasco, S. C. u. da Costa, X. Feng, S. H. B. Faria, and M. L. Gimenes. 2010. Recovery and Purification of Lactose from Whey. Chemical Engineering and Processing: Process Intensification. 49(11): 1137-1143.

Najafpour, G. D., B. A. Hashemiyeh, M. Asadi, and M. B. Ghasemi. 2008. Biological Treatment of Dairy Wastewater in an Upflow Anaerobic Sludge-Fixed Film Bioreactor. American-Eurasian J. Agric. & Environ. Sci. 4(2): 251-257.

Tasca, F., L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, and G. No ̈ ll. 2009. Comparison of Direct and Mediated Electron Transfer for Cellobiose Dehydrogenase from Phanerochaete Sordida. Anal. chem. 81: 2791–2798.

Henriksson, G., G. Johansson, and G. r. Pettersson. 2000. A Critical Review of Cellobiose Dehydrogenases. Journal of Biotechnology. 78(2): 93-113.

Wang, X., M. Falk, R. Ortiz, H. Matsumura, J. Bobacka, R. Ludwig, M. Bergelin, L. Gorton, and S. Shleev. 2012. Mediatorless Sugar/Oxygen Enzymatic Fuel Cells Based on Gold Nanoparticle-Modified Electrodes. Biosensors and Bioelectronics. 31(1): 219-225.

Chang, R. 1994. Graphite: Covalent Crystals. 5th-International Edition ed. New York: McGraw-Hill.

Zhu, H. Q., Y. M. Zhang, L. Yue, W. S. Li, G. L. Li, D. Shu, and H. Y. Chen. 2008. Graphite-Carbon Nanotube Composite Electrodes for All Vanadium Redox Flow Battery. Journal of Power Sources. 184(2): 637-640.

Balasubramanian, K. and M. Burghard. 2006. Biosensors Based on Carbon Nanotubes. Analytical and Bioanalytical Chemistry. 385(3): 452-468.

Muti, M., F. Kuralay, and A. Erdem. 2012. Single-Walled Carbon Nanotubes-Polymer Modified Graphite Electrodes for DNA Hybridization. Colloids and Surfaces B: Biointerfaces. 91(0): 77-83.

Wang, H., Z. Wu, A. Plaseied, P. Jenkins, L. Simpson, C. Engtrakul, and Z. Ren. 2011. Carbon Nanotube Modified Air-Cathodes for Electricity Production in Microbial Fuel Cells. Journal of Power Sources. 196(18): 7465-7469.

Gong, Z. Q., A. N. A. Sujari, and S. Ab Ghani. 2012. Electrochemical Fabrication, Characterization and Application of Carboxylic Multi-Walled Carbon Nanotube Modified Composite Pencil Graphite Electrodes. Electrochimica Acta. 65(0): 257-265.

Larsson, T., M. Elmgren, S.-E. Lindquist, M. Tessema, L. Gorton, and G. Henriksson. 1996. Electron Transfer between Cellobiose Dehydrogenase and Graphite Electrodes. Analytica Chimica Acta. 331(3): 207-215.

Llopis, X., A. Merkoçi, M. del Valle, and S. Alegret. 2005. Integration of a Glucose Biosensor Based on an Epoxy-Graphite-Ttf.Tcnq-God Biocomposite into a Fia System. Sensors and Actuators B: Chemical. 107(2): 742-748.

Kirgoz, U. A., D. Odaci, S. Timur, A. Merkoci, N. Pazarlioglu, A. Telefoncu, and S. Alegret. 2006. Graphite Epoxy Composite Electrodes Modified with Bacterial Cells. Bioelectrochemistry. 69(1): 128-131.

Pumera, M., A. Merkoci, and S. Alegret. 2006. Carbon Nanotube-Epoxy Composites for Electrochemical Sensing. Sensors and Actuators B: Chemical. 113(2): 617-622.

Ocaña, C., E. Arcay, and M. del Valle. 2014. Label-Free Impedimetric Aptasensor Based on Epoxy-Graphite Electrode for the Recognition of Cytochrome C. Sensors and Actuators B: Chemical. 191(0): 860-865.

Du, L. and S. C. Jana. 2007. Highly Conductive Epoxy/Graphite Composites for Bipolar Plates in Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 172(2): 734-741.

Yu, H. N., J. W. Lim, J. D. Suh, and D. G. Lee. 2011. A Graphite-Coated Carbon Fiber Epoxy Composite Bipolar Plate for Polymer Electrolyte Membrane Fuel Cell. Journal of Power Sources. 196(23): 9868-9875.

Bhatnagar, M. S. 1996. Epoxy Resins (Overview). The Polymeric Materials Encyclopedia. 2233.

Mahouche-Chergui, S., S. Gam-Derouich, C. Mangeney, and M. M. Chehimi. 2011. Aryl Diazonium Salts: A New Class of Coupling Agents for Bonding Polymers, Biomacromolecules and Nanoparticles to Surfaces. Chemical Society Reviews. 40(7): 4143-4166.

Tasca, F., W. Harreither, R. Ludwig, J. J. Gooding, and L. Gorton. 2011. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface. Analytical Chemistry. 83(8): 3042-3049.

Larsson, T., A. Lindgren, T. Ruzgas, S. E. Lindquist, and L. Gorton. 2000. Bioelectrochemical Characterisation of Cellobiose Dehydrogenase Modified Graphite Electrodes: Ionic Strength and Ph Dependences. Journal of Electroanalytical Chemistry. 482(1): 1-10.

Harreither, W., V. Coman, R. Ludwig, D. Haltrich, and L. Gorton. 2007. Investigation of Graphite Electrodes Modified with Cellobiose Dehydrogenase from the Ascomycete Myriococcum Thermophilum. Electroanalysis. 19(2-3): 172-180.

Tasca, F., L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, and G. Noll. 2008. Direct Electron Transfer at Cellobiose Dehydrogenase Modified Anodes for Biofuel Cells. Journal of Physical Chemistry B. 112(26): 9956-9961.

Stoica, L., N. Dimcheva, Y. Ackermann, K. Karnicka, D. A. Guschin, P. J. Kulesza, J. Rogalski, D. Haltrich, R. Ludwig, L. Gorton, and W. Schuhmann. 2009. Membrane-Less Biofuel Cell Based on Cellobiose Dehydrogenase (Anode)/Laccase (Cathode) Wired Via Specific Os-Redox Polymers. Fuel Cells. 9(1): 53-62.

Trashin, S. A., D. Haltrich, R. Ludwig, L. Gorton, and A. A. Karyakin. 2009. Improvement of Direct Bioelectrocatalysis by Cellobiose Dehydrogenase on Screen Printed Graphite Electrodes Using Polyaniline Modification. Bioelectrochemistry. 76(1-2): 87-92.

Safina, G., R. Ludwig, and L. Gorton. 2010. A Simple and Sensitive Method for Lactose Detection Based on Direct Electron Transfer between Immobilised Cellobiose Dehydrogenase and Screen-Printed Carbon Electrodes. Electrochimica Acta. 55(26): 7690-7695.

Schulz, C., R. Ludwig, P. O. Micheelsen, M. Silow, M. D. Toscano, and L. Gorton. 2012. Enhancement of Enzymatic Activity and Catalytic Current of Cellobiose Dehydrogenase by Calcium Ions. Electrochemistry Communications. 17(0): 71-74.

Yakovleva, M., O. Buzas, H. Matsumura, M. Samejima, K. Igarashi, P.-O. Larsson, L. Gorton, and B. Danielsson. 2012. A Novel Combined Thermometric and Amperometric Biosensor for Lactose Determination Based on Immobilised Cellobiose Dehydrogenase. Biosensors & Bioelectronics. 31(1): 251-256.

Glithero, N., C. Clark, L. Gorton, W. Schuhmann, and N. Pasco. 2013. At-Line Measurement of Lactose in Dairy-Processing Plants. Analytical and Bioanalytical Chemistry. 405(11): 3791-3799.

Picot, M., L. Lapinsonniere, M. Rothballer, and F. Barriere. 2011. Graphite Anode Surface Modification with Controlled Reduction of Specific Aryl Diazonium Salts for Improved Microbial Fuel Cells Power Output. Biosens Bioelectron. 28(1): 181-8.

Commault, A. S., G. Lear, and R. J. Weld. 2015. Maintenance of Geobacter-Dominated Biofilms in Microbial Fuel Cells Treating Synthetic Wastewater. Bioelectrochemistry. 106(0): 150-158.

Ludwig, R., W. Harreither, F. Tasca, and L. Gorton. 2010. Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications. Chemphyschem. 11(13): 2674-2697.

Tasca, F., M. N. Zafar, W. Harreither, G. Noll, R. Ludwig, and L. Gorton. 2011. A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase from Corynascus Thermophilus and Single-Walled Carbon Nanotubes. Analyst. 136(10): 2033-2036.




DOI: http://dx.doi.org/10.11113/jt.v79.11333

Refbacks

  • There are currently no refbacks.


Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.