Mimi Hani Abu Bakar, Neil F Pasco, Ravi Gooneratne, Kim Byung Hong


Properties such as electrical conductivity, low resistivity, chemicals and corrosion resistance are mostly found in carbon based materials. Epoxy resin is excellent for electrical insulation and can be used as a conductor with the addition of conductive filler. Combinations of carbon and epoxy show qualities of a conductive electrode, mechanically strong with design flexibility and thus makes them suitable as electrodes in microbial fuel cell (MFC). In this study, graphite-epoxy composites were fabricated with multi-walled carbon nanotube (MWCNT) embedded in the matrix surface. 9,10-Anthraquinone-2,6-disulfonic acid disodium salt/polypyrrole (PPy/AQDS) was used as mediator, covalently electrografted on electrode’s surface. Electrochemical stability of anodes during continuous operation were measured in air-cathode MFCs. It appears that maximum power in MFC could be increased up to 42% with surface modification using PPy/AQDS. Internal resistance (Rint) could be reduced up to 66% with the inclusion of MWCNT. These findings show that a one-day fabrication of a-ready-to-use conductive electrode is possible for graphite content between 70-80% (w/w).


Anode, disodium salt of Anthraquinone disulfonic acid /polypyrrole, graphite-epoxy composite, microbial fuel cell

Full Text:



Nandy, A., V. Kumar, S. Mondal, K. Dutta, M. Salah, and P. P. Kundu. 2015. Performance Evaluation of Microbial Fuel Cells: Effect of Varying Electrode Configuration and Presence of a Membrane Electrode Assembly. New Biotechnology. 32(2): 272-281.

Corb, I., F. Manea, C. Radovan, A. Pop, G. Burtica, P. Malchev, S. Picken, and J. Schoonman. 2007. Carbon-Based Composite Electrodes: Preparation, Characterization and Application in Electroanalysis. Sensors. 7: 2626-2635.

Bhatnagar, M. S. 1996. Epoxy Resins (Overview). The Polymeric Materials Encyclopedia. 2233.

Martin, C. A., J. K. W. Sandler, A. H. Windle, M. K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer. 2005. Electric Field-induced Aligned Multi-wall Carbon Nanotube Networks in Epoxy Composites. Polymer. 46(3): 877-886.

Du, L. and S. C. Jana. 2007. Highly Conductive Epoxy/Graphite Composites for Bipolar Plates in Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 172(2): 734-741.

Vahedi, F., H. R. Shahverdi, M. M. Shokrieh, and M. Esmkhani. 2014. Effects of Carbon Nanotube Content on the Mechanical and Electrical Properties of Epoxy-based Composites. New Carbon Materials. 29(6): 419-425.

Kirgoz, U. A., D. Odaci, S. Timur, A. Merkoci, N. Pazarlioglu, A. Telefoncu, and S. Alegret. 2006. Graphite Epoxy Composite Electrodes Modified with Bacterial Cells. Bioelectrochemistry. 69(1): 128-131.

Llopis, X., A. Merkoçi, M. del Valle, and S. Alegret. 2005. Integration of a Glucose Biosensor Based on an Epoxy-Graphite-Ttf.Tcnq-God Biocomposite into a Fia System. Sensors and Actuators B: Chemical. 107(2): 742-748.

Ocaña, C., E. Arcay, and M. del Valle. 2014. Label-free Impedimetric Aptasensor Based on Epoxy-graphite Electrode for the Recognition of Cytochrome C. Sensors and Actuators B: Chemical. 191(0): 860-865.

Pumera, M., A. Merkoci, and S. Alegret. 2006. Carbon Nanotube-Epoxy Composites for Electrochemical Sensing. Sensors and Actuators B: Chemical. 113(2): 617-622.

Ma, P.-C., N. A. Siddiqui, G. Marom, and J.-K. Kim. 2010. Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review. Composites Part A: Applied Science and Manufacturing. 41(10): 1345-1367.

Tasca, F., W. Harreither, R. Ludwig, J. J. Gooding, and L. Gorton. 2011. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface. Analytical Chemistry. 83(8): 3042-3049.

kumar, G. G., V. G. S. Sarathi, and K. S. Nahm. 2013. Recent Advances and Challenges in the Anode Architecture and Their Modifications for the Applications of Microbial Fuel Cells. Biosensors and Bioelectronics. 43(0): 461-475.

Rader, G. K. and B. E. Logan. 2010. Multi-Electrode Continuous Flow Microbial Electrolysis Cell for Biogas Production from Acetate. International Journal of Hydrogen Energy. 35(17): 8848-8854.

Kim, J. R., B. Min, and B. E. Logan. 2005. Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production. Applied Microbial Biotechnology. 68: 23-30.

Atlas, R. M. 2005. Handbook of Microbiological Media. Second Edition ed. Fluorida: Taylor & Francis Group.

Reiter, S., K. Habermuller, and W. Schuhmann. 2001. A Reagentless Glucose Biosensor Based on Glucose Oxidase Entrapped into Osmium-Complex Modifed Polypyrrole Flms. Sensors and Actuators B. 79: 150-156.

Kumar, A. S. and P. Swetha. 2011. Simple Adsorption of Anthraquinone on Carbon Nanotube Modified Electrode and Its Efficient Electrochemical Behaviors. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 384(1–3): 597-604.

Karami, H. and A. R. Nezhad. 2013. Investigation of Pulse-Electropolymerization of Conductive Polypyrrole Nanostructures. International Journal of Electrochemical Science. 8: 8905-8921.

Feng, C., L. Ma, F. Li, H. Mai, X. Lang, and S. Fan. 2010. A Polypyrrole/Anthraquinone-2,6-Disulphonic Disodium Salt (Ppy/Aqds)-Modified Anode to Improve Performance of Microbial Fuel Cells Biosensors and Bioelectronics. 25: 1516-1520.

Watson, V. J. and B. E. Logan. 2011. Analysis of Polarization Methods for Elimination of Power Overshoot in Microbial Fuel Cells. Electrochemistry Communications. 13(1): 54-56.

Lanas, V. and B. E. Logan. 2013. Evaluation of Multi-brush Anode Systems in Microbial Fuel Cells. Bioresource Technology. 148(0): 379-385.

Sandler, J., M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle. 1999. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer. 40(21): 5967-5971.

O'Hare, D., J. V. Macpherson, and A. Willows. 2002. On the Microelectrode Behaviour of Graphite‚ Epoxy Composite Electrodes. Electrochemistry Communications. 4(3): 245-250.

Allaoui, A., S. Bai, H. M. Cheng, and J. B. Bai. 2002. Mechanical and Electrical Properties of a Mwnt/Epoxy Composite. Composites Science and Technology. 62(15): 1993-1998.

Martin, C. A., J. K. W. Sandler, M. S. P. Shaffer, M. K. Schwarz, W. Bauhofer, K. Schulte, and A. H. Windle. 2004. Formation of Percolating Networks in Multi-Wall Carbon-Nanotube-Epoxy Composites. Composites Science and Technology. 64(15): 2309-2316.

Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology. 40(17): 5181-5192.

Du , Z., H. Li , and T. Gu 2007. A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnology Advances. 25: 464-482.

Logan, B. E. 2008. Mechanism of Electron Transfer. New Jersey: John Wiley & Sons, Inc.

Compton, R., C. B.-. McAuley, and E. Dickinson. 2012. Cyclic Voltammetry: Coupled Homogenous Kinetics and Adsorption. London: Imperial College Press.

Ramakrishnappa, T., M. Pandurangappa, and D. H. Nagaraju. 2011. Anthraquinone Functionalized Carbon Composite Electrode: Application to Ammonia Sensing. Sensors and Actuators B: Chemical. 155(2): 626-631.

Ghasemi, M., M. Ismail, S. K. Kamarudin, K. Saeedfar, W. R. W. Daud, S. H. A. Hassan, L. Y. Heng, J. Alam, and S.-E. Oh. 2013. Carbon Nanotube as an Alternative Cathode Support and Catalyst for Microbial Fuel Cells. Applied Energy. 102: 1050–1056.

Feng, C., Q. Wan, Z. Lv, X. Yue, Y. Chen, and C. Wei. 2011. One-Step Fabrication of Membraneless Microbial Fuel Cell Cathode by Electropolymerization of Polypyrrole onto Stainless Steel Mesh. Biosensors and Bioelectronics. 26(9): 3953-3957.

DOI: http://dx.doi.org/10.11113/jt.v79.11334


  • There are currently no refbacks.

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.