Wun-Fui Mark-Lee, Febdian Rusydi, Lorna Jeffery Minggu, Takashi Kubo, Mohammad Kassim


Ru(II) complexes, [Ru(bpy)2(m-R-L)](PF6)2 where bpy = 2,2’-bipyridyl and  m-R-L= 1-(meta-R)-benzoyl-3-(pyridine-2-yl)-1H-pyrazole derivatives (R = H, CH3 and Cl) abbreviated as RuL, Ru(m-CH3-L) and Ru(m-Cl-L) complexes, respectively, were synthesized and characterized with spectroscopic techniques namely, infrared, UV-Vis and nuclear magnetic resonance (NMR), photoluminescence and mass spectroscopy. Density functional theory (DFT) and time-dependent (TD) DFT calculations were carried out to study the structural and electronic features of the molecules. These Ru(II) complexes exhibit photo-electronic properties required for a photosensitiser in a TiO2-catalysed photoelectrochemical (PEC) cell. In-depth understanding of the R-L fragment functionality is important to tune the photo-electronic properties of the Ru(II) complex. The highest-occupied molecular orbital (HOMO) is mainly localized at the Ru(II) centre, while the LUMO is dominantly spread across the R-L ligand. The Ru(II) complexes showed favourable metal-to-ligand charge transfer (MLCT) energy levels, which are comparably higher than the conduction band of TiO2 to facilitate electron injection process. Among the Ru(II) complexes, Ru(m-Cl-L) comparatively possesses the highest photoluminescence quantum yield and has the potential to be applied as photosensitiser in PEC systems.


1-benzoyl-3-(pyridine-2-yl)-1H-pyrazole, DFT, photoluminescence, Ru(II) photosensitiser, photoelectrochemical

Full Text:



Shelton, A. H., Stephenson, A., Ward, M. D. and Kassim, M. B. 2011. 1-Benzoyl-3-(pyridin-2-yl)-1H-pyrazole. Acta Crystallographica Section E. 67(9): o2445-o2445.

Adams, H., Alsindi, W. Z., Davies, G. M., Duriska, M. B., Easun, T. L., Fenton, H. E., Herrera, J. M., George, M. W., Ronayne, K. L., Sun, X. Z., Towriec, M and Ward, M. D. 2006. New Members of the [Ru(diimine)(CN)4]2- Family: Structural, Electrochemical and Photophysical Properties. Dalton Transactions. 1: 39-50.

Bozoglian, F., Romain, S., Ertem, M. Z., Todorova, T. K., Sens, C., Mola, J., Rodríguez, M., Romero, I., Benet-Buchholz, J., Fontrodona, X., Cramer, C. J., Gagliardi, L. and Llobet, A. 2009. The Ru-Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society. 131(42): 15176-15187.

Colombo, A., Dragonetti, C., Magni, M., Meroni, D., Ugo, R., Marotta, G., Grazia Lobello, M., Salvatori, P. and De Angelis, F. 2015. New Thiocyanate-free Ruthenium(II) Sensitizers with Different Pyrid-2-yl Tetrazolate Ligands for Dye-sensitized Solar Cells. Dalton Transactions. 44(26): 11788-11796.

Huang, J-F., Liu, J-M., Su, P-Y., Chen, Y-F., Shen, Y., Xiao, L-M., Kuang, D.-B. and Su, C.-Y. 2015. Highly Efficient and Stable Cyclometalated Ruthenium(II) Complexes as Sensitizers for Dye-sensitized Solar Cells. Electrochimica Acta.174: 494-50.

Klein, C., Baranoff, E., Grätzel, M. and Nazeeruddin, M. K. 2011. Convenient Synthesis of Tridentate 2,6-di(pyrazol-1-yl)-4-carboxypyridine and Tetradentate 6,6’-di(pyrazol-1-yl)-4,4’-dicarboxy-2,2’-bipyridine Ligands. Tetrahedron Letters. 52(5): 584-587.

Wu, G., Kaneko, R., Zhang, Y., Shinozaki, Y., Sugawa, K., Islam, A., Han, L., Bedja, I., Gupta, R. K., Shen, Q. and Otsuki, J. 2016. Neutral and Anionic Tetrazole-Based Ligands in Designing Novel Ruthenium Dyes for Dye-Sensitized Solar Cells. Journal of Power Sources. 307: 416-425.

Maeda, K., Sahara, G., Eguchi, M. and Ishitani, O. 2015. Hybrids of a Ruthenium(II) Polypyridyl Complex and a Metal Oxide Nanosheet for Dye-Sensitized Hydrogen Evolution with Visible Light: Effects of the Energy Structure on Photocatalytic Activity. American Chemical Society Catalysis. 5(3): 1700-1707.

Li, F., Fan, K., Wang, L., Daniel, Q., Duan, L. and Sun, L. 2015. Immobilizing Ru(Bda) Catalyst on a Photoanode Via Electrochemical Polymerization for Light-Driven Water Splitting. American Chemical Society Catalysis. 5(6): 3786-3790.

Vougioukalakis, G. C., Philippopoulos, A. I., Stergiopoulos, T. and Falaras, P. 2011. Contributions to the Development of Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells. Coordination Chemistry Reviews. 255(21-22): 2602-2621.

Funaki, T., Funakoshi, H., Kitao, O., Onozawa-Komatsuzaki, N., Kasuga, K., Sayama, K. and Sugihara, H. 2012. Cyclometalated Ruthenium(II) Complexes as Near-IR Sensitizers for High Efficiency Dye-Sensitized Solar Cells. Angewandte Chemie-International Edition. 51(30): 7528-7531.

Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Cointe, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A. and Grätzel, M. 2001. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society. 123(8): 1613-1624.

Renouard, T., Fallahpour, R. A., Nazeeruddin, M. K., Humphry-Baker, R., Gorelsky, S. I., Lever, A. B. P. and Grätzel, M. 2002. Novel Ruthenium Sensitizers Containing Functionalized Hybrid Tetradentate Ligands: Synthesis, Characterization, and INDO/S Analysis. Inorganic Chemistry. 41(2): 367-378.

Barolo, C., Nazeeruddin, K., Fantacci, S., Censo, D. Di, Comte, P., Liska, P., Viscardi, G., Quagliotto, P., De Angelis, F., Ito, S., Gra, M., Lausanne, D., Lausanne, C., Cnr, I., Uni, V., Elce, V. and Perugia, I. 2006. Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry. 45(12): 4642-4653.

Suzuki, K., Kobayashi, A., Kaneko, S., Takehira, K., Yoshihara, T., Ishida, H., Shiina, Y., Oishi, S. and Tobita, S. 2009. Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD Detector. Physical Chemistry Chemical Physics. 11(42): 9850-9860.

Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. a., Psillakis, E., Rees, L. H. and Ward, M. D. 1997. Lanthanide Complexes of the Hexadentate N-Donor Podand Tris[3-(2-pyridyl)pyrazolyl]hydroborate: Solid-State and Solution Properties. Inorganic Chemistry. 36(1): 10-18.

Sullivan, B. P., Salmon, D. J. and Meyer, T. J. 1978. Mixed Phosphine 2,2’-Bipyridine Complexes of Ruthenium. Inorganic Chemistry: 17(12): 3334-3341.

Hori, K., Ikenaga, Y., Arata, K., Takahashi, T., Kasai, K., Noguchi, Y., Sumimoto, M., and Yamamoto, H. Theoretical Study on the Reaction Mechanism for the Hydrolysis of Esters and Amides under Acidic Conditions. Tetrahedron. 63(5): 1264-1269.

Medlycott, E. A. and Hanan, G. S. 2005. Designing Tridentate Ligands for Ruthenium (II) Complexes with Prolonged Room Temperature Luminescence Lifetimes. Chemical Society reviews. 34(2): 133-142.

Arifin, K., Majlan, E. H., Wan Daud, W. R. and Kassim, M. B. 2012. Bimetallic Complexes in Artificial Photosynthesis for Hydrogen Production: A Review. International Journal of Hydrogen Energy. 37(4): 3066-3087.

Cherry, W. R. and Henderson, L. J. 1984. Relaxation Processes of Electronically Excited States in Polypyridine Ruthenium Complexes. Inorganic Chemistry. 23(22): 983-986.

Wagenknecht, P. S. and Ford, P. C. 2011. Metal Centered Ligand Field Excited States: Their Roles in the Design and Performance of Transition Metal Based Photochemical Molecular Devices. Coordination Chemistry Reviews. 255(5-6): 591-616.

Fan, W., Tan, D. and Deng, W. 2011. Theoretical Investigation of Triphenylamine Dye/Titanium Dioxide Interface for Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics : PCCP. 13(36): 16159-16167.

Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H. and Arakawa, H. 2003. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. B. 107(2): 597-606.



  • There are currently no refbacks.

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.