PHOTOELECTROCHEMICAL ANALYSIS OF TITANIUM DIOXIDE BY USING OXALIC ACID AS A SACRIFICIAL DONOR

Siti Nur Hidayah Jaafar, Lorna Jeffery Minggu, Khuzaimah Arifin, Mohammad Kassim, Wan Ramli Wan Daud

Abstract


Photoelectrochemical (PEC) water splitting is a very promising green method to produce solar fuel. Titanium dioxide (TiO2) has been widely used as photocatalyst for this type of reaction. Improving the performance of TiO2 for PEC water splitting has been ongoing and addition of sacrificial donor especially from waste is an attractive option to achieve this. Oxalic acid is one component in organic waste stream that can be used as sacrificial donor. The TiO2 thin films has been fabricated by coating TiO2 paste on Fluorine Tin oxide (FTO) glass surface. The morphology of the TiO2 thin films were porous and rough with uniform particles size with crystallite size of about 20 nm and dominant anatase peak. The TiO2 photoelectrode undergo PEC testing to measure its photolectroactivity by using oxalic acid as a sacrificial donor in two different type of electrolytes which are distilled water and sodium sulfate (NA2SO4) aqueous solution. The photocurrent produced without addition of oxalic acid is much lower than with the acid. The saturation photocurrent for aqueous NA2SO4 solution and water electrolyte is 0.1 mA/cm2 and negligible respectively. While the photocurrent for addition of oxalic acid in NA2SO4 aqueous solution is 0.5 mA/cm2 and the photocurrent for oxalic acid in water only is 0.9 mA/cm2, which is almost double compared to in NA2SO4 and tenfold in water only. The highest photocurrent produced by TiO2 photoelectrode is by addition of oxalic acid in aqueous (H2O) electrolyte.


Keywords


Water splitting, photoelectrochemical cell, titanium dioxide, oxalic acid, donor

Full Text:

PDF

References


Ajayi, F. F., Chae, K. J., Kim, K. Y., Choi, M. & Kim, I. S. 2009. Photocurrent and Photoelectrochemical Hydrogen Production with Tin Porphyrin and Platinum Nanowires Immobilized with Nafion on Glassy Carbon Electrode. International Journal of Hydrogen Energy. 34(1): 110-114.

Jeng, K. T., Liu, Y. C., Leu, Y. F., Zeng, Y. Z., Chung, J. C. & Wei, T. Y. 2010. Membrane Electrode Assembly-based Photoelectrochemical Cell for Hydrogen Generation. International Journal of Hydrogen Energy. 35(20): 10890-10897.

Grimes, C. A., Varghese, O. K. & Ranjan, S. 2008. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. Springer Science+Business Media.

Lin, C.-J., Tu, W.-K., Kuo, C.-K. & Chien, S.-H. 2011. Single-step Fabrication of Phase-controllable Nanocrystalline Tio2 Films for Enhanced Photoelectrochemical Water Splitting and Dye-sensitized Solar Cells. Journal of Power Sources. 196: 4865-4869.

Manoharan, K. and Venkatachalam, P. 2015. Photoelectrochemical Performance of Dye Sensitized Solar Cells Based on Aluminum-doped Titanium Dioxide Structures. Materials Science in Semiconductor Processing. 30: 208-217.

Noh, H. B., Won, M. S. & Shim, Y. B. 2014. Simple Electrochemical Sensor for Caffeine Based on Carbon and Nafion-modified Carbon Electrodes. Biosensors and Bioelectronics. 61: 554-561.

Sanjeev, K.G., Rucha, D., Prafulla, K.J., Satyaprakash, S. & Kirin, D. 2009. Titanium Dioxide Synthesized Using Titanium Chloride: Size Effect Study Using Raman Spectroscopy and Photoluminescence. J. Raman Spectrosc. 41: 350-355.

Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. 2007. A Review and Recent Developments in Photocatalytic Water-splitting using TiO2 for Hydrogen Production. Renewable and Sustainable Energy Reviews. 1: 401–425.

Xie, Y.B. and Li, X.Z. 2006. Interactive Oxidation of Photoelectrocatalysis and Electro-fenton for Azo Dye Degradation using TiO2–Ti Mesh and Reticulated Vitreous Carbon Electrodes. Materials Chemistry and Physics. 95: 39-50.

Yuexiang, L., Gongxuan, L. & Shuben, L. 2001. Photocatalytic Hydrogen Generation and Decomposition of Oxalic Acid Over Platinized TiO2. Applied Catalysis A: General. 214: 179-185.

Tao, S., Yun, W., Haimin, Z., Porun, L. & Huijun, Z. 2015. Adsorption and Oxidation of Oxalic Acid on Anatase TiO2 (0 0 1) surface: A Density Functional Theory Study. Journal of Colloid and Interface Science. 454: 180-186.

Sawsan, A. M., Basma, S. M., El-Tabei, A. S., Hegazy, M. A., Mohamed, A. B., Killa, H. M., Ebtisam, K. H., Salah, A. K., Mamdouh, D. & Samar, B. H. 2014. Improvement of the Photogalvanic Cell for Solar Energy Conversion and Storage: Rose Bengal–Oxalic Acid-Tween 80 System. Energy Procedia. 46: 227-236.

Waldner, G., Pourmodjib, M., Bauer, R. & Neumann-Spallart, M. 2003. Photoelectrocatalytic Degradation of 4-chlorophenol and Oxalic Acid on Titanium Dioxide Electrodes. Chemosphere. 50(8): 989-998.

Siti Nur Hidayah Jaafar, Lorna Jeffery Minggu, Khuzaimah Ariffin, Mohammad B. Kasssim, Wan Ramli Wan Daud. 2016. Effect of Using Pitaya Peel as Dye-Sensitizer and Dye Molecules in Electrolyte for Photoelectrochemical Reaction. Malaysian Journal of Analytical Sciences. 20(3): 651-659.

Mark Lee, W. F., Ng, K. H., Minggu, L. J., Umar, A. A. & Kassim, M. 2013. A Molybdenum Dithiolene Complex as a Potential Photosensitiser for Photoelectrochemical Cells. International Journal of Hydrogen Energy. 38: 9578-9584.

Minggu, L. J., Daud, W. R. W. & B. K.M. 2010. An Overview of Photocells and Photoreactors for Photoelectrochemical Water Splitting. International Journal of Hydrogen Energy. 35: 5233-5244.

Chou, T. P., Zhang, Q., Russo, B., Fryxell, G. E. & Cao, G. 2007. Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells. J. Phys. Chem. 111: 6296-6302.

Zhang, Z., Wang, C.-C., Zakaria, R. & Ying, J.Y. 1998. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 102(52): 10871-10878.

An, T., Li, G., Fu, J., Sheng, G. & Kun, Z. 2005. Importance of the Band Gap Energy and Flat Band Potential for the Application of Modified TiO2 Photoanodes on Water Photolysis. Journal of Power Sources. 181: 46-55.

Navio, J. A., Colon, G., Macias, M., Real, C. & Litter, M. I. 1999. Iron-doped Titania Semiconductor Powders by Sol-gel Method. Part I: Synthesis and Characterization. Applied Catalyst. 177: 111-120.

Lee, A. C., Lin, R. H., Yang, C. Y., Lin, M. H. & Wang, W. Y. 2007. Preparations and Characterization of Novel Photocatalysts with Mesoporous Titanium Dioxide (TiO2) via a Sol–gel Method. Materials Chemistry and Physics. 109: 275-280.

Calogero, G., Citro, I., Di Marco, G., Minicante, S. A., Morabito, M. & Genovese, G. 2014. Brown Seaweed Pigment as a Dye Source for Photoelectrochemical Solar Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 117: 702-706.

Valencia, S., Marin, J.M. & Restrepo, G. 2010. Study of Band Gap of Synthesized Titanium Dioxide Nanoparticules using the Sol-Gel Method and a Hydrothermal Treatment. The open Materials Science Journal. 4: 9-14.

Taicheng An, Ya Xiong, Guiying Li, Xihai Zhu, Guoying Sheng, Jiamo Fu. 2006. Improving Ultraviolet Light Transmission in a Packed-bed Photoelectrocatalytic Reactor for Removal of Oxalic Acid from Wastewater. Journal of Photochemistry and Photobiology A: Chemistry. 181: 158-165.

Ahmed, S., Rasul, M. G., Brown, R., & Hashib, M. A. 2011. Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review. Journal of Environmental Management. 92(3): 311-330.

Waldner, G., Gomez, R. & Neumann-Spallart, M. 2007. Using Photoelectrochemical Measurements for Distinguishing Between Direct and Indirect Hole Transfer Processes On Anatase: Case of Oxalic Acid. Electrochimica Acta. 52: 2634-2639.

Irina, I., Jenny, S., Henning, G., Jan-Olliver, K., Frank, G., Thomas, K., Detlef, B. & Cecilia, B. M. 2013. Photocatalytic Degradation of Oxalic and Dichloroacetic Acid on TiO2 Coated Metal Substrates. Catalysis Today. 209: 84-90.




DOI: http://dx.doi.org/10.11113/jt.v79.11336

Refbacks

  • There are currently no refbacks.


Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.